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Effect of the image potential on the binding energy of excitons
in semiconductor quantum wells
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Abstract. We report the results of variational estimates of the binding energy of excitons
in quantum wells along the effect of the image potential.

In recent years optical properties of semiconductor quantum wells have received con-
siderable research interest both experimentaily and theoretically. Measurements on
absorption coefficients of interband excitons in these structures showed clear evidence
of muitiple subbands due to the quantum confinement of electrons and holes by the
band-edge discontinuities at the heterointerface (see ¢.g. Dingle ef al 1974, 1975,
Miller er al 1981, 1984, Meynadier ef al 1985). Most of the attention has been fo-
cused on the excitons formed between the lower-lying electron and hole subbands, the
latter being split into heavy-hole and light-hole subbands. It has been well established
that the binding energies of excitons in lower-dimensional structures are significantly
enhanced from the values in bulk materials as a result of the confined carrier motion.
Most of the theoretical determinations of the exciton binding energy performed so
far used variational calculations (see e.g. Lee and Lin 1979, Miller ez al 1981, Bastard
et al 1982, Greene and Bajaj 1983, Greene et @f 1984, Brum and Bastard 1985, Wu
1989). Whittaker and Elliot (1988) and Tran Thoai et al/ (1990} calculated the exci-
ton binding energy by numerical integration of the Schrédinger equation. Recently
experimental measurements of the exciton binding energy in dependence on the well
width of GaAs-Ga,__ Al _As quantum wells have been reported by Koteles and Chi
(1988).

In this paper we present a variational calculation in the effective-mass approxi-
mation of the exciton binding energy in semiconductor quantum wells along to the
effects of the image potential. The effects arise due to the different polarizabilities
of the semiconductors forming the semiconductor microstructure.

The Hamiltonian of the Wannier exciton in semiconductors with zincblende struc-
ture such as GaAs and Ga,__Al_As is expressed in terms of 2 6 x 6 matrix. In
GaAs and Ga,__Al_As, however, the exciton Hamiltonian can be further reduced to
a 4 x 4 matrix as the value of the spin—orbit splitting is much larger than the exciton
binding energy. Due to reduction in symmetry (along the axis of growth) and the
band discontinuities at the heterointerfaces the degeneracy of the valence band at
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the I point is removed. Following, the contribution of the off-diagonal terms to the
binding energy is rather small. Hence, it is possible to retain only the diagonal part
of the hole Hamiltonian (Greene et a! 1984). This means that light-hole and heavy-
hole excitons are uncoupled. In the framework of effective-mass approximation, the
Hamiltonian of the Wannier exciton using cylindrical coordinates in the x-y plane is
given by (Greene er al 1984, Brum and Bastard 1985)

2 2 2 2
Ho [_1_ 8 (r;_r)_l_la_]_h_a__{_ve(ze)

2py LT ar r? 32} 2m, 822
__® a—2+V(z)+Vc(r'z z,) ()
th:l: azh h\*=h 1 “ar*“h .

where m, is the effective mass of the conduction electron, m,, the heavy (+) or
light (=) hole effective mass along the direction perpendicular to the heterointerface,
and p4 is the corresponding reduced exciton mass in the z-y plane. Both, m,
and p, are expressed in terms of the Luttinger parameters «; and -y, as my, "' =
my " (v, F 29,), sy = m," 1 + my~ (v, £ v,) where m, is the free electron
mass. The position of the electron and the hole are designated by 2, and =z,
respectively, and (r,) are the relative coordinates in the xz—y plane. V(z.) is
the confining potential for the electrons in the conduction band and Vj(z,) that
for the holes of the valence band, V<(r;z,,z;) is the electron-hole interaction
potential in the quantum well. The quantum well considered here is realized by a
double heterostructure (DHS) consisting of a smaller gap semiconductor (v = 1) for
a > z > 0 (for instance GaAs) which is symmetrically embedded between a wider
gap semiconductor (v = 2} for z > e and 0 > z (for instance Ga,__Al_As).

The trial wave function used in the variational calculation of the exciton binding
energy is

Yz, z,) = z Yk (z.) ‘P'I'{‘(zh) I i (TerZp)- 2
KK

Here we assume that the Hamiltonian H is dominated by V, and V. Hence, we use
the assumption of the strong confinement limit which is valid if a < e, (where
Gexy = 4Teg€, A% fe? . is the bulk exciton Bohr radivs and «,, the static dielectric
constant of semiconductor 1). For simplicity we use gz - (®,.,%,) = g(r, ). The
separability in r,¢ and z_,,z, of ¥(x_,®,) has been shown to lead to accurate
results for GaAs—Ga,__Al_As quantum wells with thicknesses ranging from about
3 to about 30 nm (Brum and Bastard 1985). The function 5, (z.) and @%.(z,)
are the envelope wave functions of electrons and holes defined by the corresponding
single-particle Schrodinger equations. Within the square well potential with infinite
barrier the envelope wave functions are given by

) = |2 sin U )

and the corresponding energy eigenvalues, the subband energies, are
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The wave function g(r,¢) describes the internal motion of the exciton parallel to
the interfaces. Using equations (2)-(4) in the Schrédinger equation of the exciton
one obtains

[_i (E2(-2)+% 2z ) + Ve ()] sty =8 gtr0). )

2p, \r Or
Herein the matrix element of the electron-hole interaction potential is given by
V() = [dz, [aa, oGP o (PVo (). ©

We minimize the expection value EXKK'()) = { g|Hlg} / {glg) and obtam by this
variational procedure the exciton binding energy EBK = —min E. X (,\) this
being the rigorous upper bound for the true binding energy. For g(r, cp) we use the
1s-like trial function

0(r) = Nexp (-20) @

eyt

with A the variational parameter and N a normalization constant.

With respect to the bulk case, the electron-hole interaction is modified by image
effects arising from the different polarizabilitics of the semiconductors of the iayered
system. To calculate the electron—hole interaction potential we solve at first Poisson’s
equation together with the boundary conditions of electrostatics and in a second step
we calculate the electrostatic energy for an electron-hole pair at the positions z_ and
wy,. The interaction potential is given by

1 =)
VE(r; Zes 7)) = '2";_'-/; dq" q {Ju(q"’") [VDIR(Q‘"; Zg, Zp) + VMIM(‘?";ZQ, Zh)]

v IM(le ze) + VSIM(Q":zh)} 8

with J, being the Bessel function of the first kind, g, = |qy| the absolute value of the
wavevector g in the z—y plane and VC(q";ze,zh) is the two-dimensional Fourier
transform of V°(»; 2, z,). We write the matrix elements in the form

el

Vex( ‘1||) =- Frx (q") ©)

2e£q

where the form factors fy g (q;) are calculated according equation (7) to be

frerolap) = [z, [z, [P k() Haizan). (0)

The contributions to the form factor f(gqy; z,,2,) are (Wendler et al 1990)

DIR/ . — —gylze—
f (Q||1 Zer2p) =€ aylze=adl (11)
—qla—ze) 4 ¢, e—9l(atze)
MIM e 212 z
f () Zer» 20} = €012 eTh ¥k
') 2 -
I edl® — €2 =99
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edll® —~ eiue_qll"'

e~ 1o (12)
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and

fSlM(qu’ ze,h) = T fgéz o= % (e-qu(a—2z.,h) + eq|i(a-2zq,x) + 2€alze_qua)
— ts2
(13)

where €, = (€,, — €,,)/(€,, + €,,). The interaction potential includes two physical
different parts, the direct coulomb part equation (11) and the image parts equations
(12) and (13). The image contribution to the interaction potential itselfs consists of
two parts. The mutual image (MIM) potential arises from the two charges of the
electron and hole. The image charge of the electron interacts with the charge of the
hole and vice versa. But the self-image (sIM) potential of the electron and that of
the hole arise from their image charges alone. This means interaction of the charge
of the electron (hole) with its image charge. According to this physical origin the
self-image potential doesn’t depend on the difference r between the electron and the
hole in the z—y plane. But for large distances r between the electron and the hole in
the x—y plane, both the direct and the mutual image parts go to zero. Further, one
can easily obtain from the above equations that for & — oo both image contributions
vanish as in the case €,, — ¢,;. In all explicit estimations we restrict ourselves to the
lowest optical subband transition K = 0 — K = 0. For this case the form factor

foolqy) is given by

1
f:'POIR(qu) = ke —a - 2(q"a.)2(1 —_ e_q“a)

— =4
(ge)24(27)? ° q

(271-)2 - - e .
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1—e"¢
MIM,
Joo () = 72 €2 e~ 20e
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1 - 2 (‘1"“)2
X ((q"a)2 (Q‘||‘1-)2 + (27)2 + [(q"a)z + (2.,1-)2]2) {15)

SIM(g) = ————etl2 ey (1. 9
oo (q“) 1-— Eglze"zqﬂ“ [26312 + (1 € ) (q“ﬂ's (q"a)2 + 7r2 " (16)

In figure 1 the interaction potential VS (r) is plotted for a GaAs—Ga, 5
Al, o5AS DHS (e,, = 12.87 and €,, = 12.21: ¢,; /€,, = 1.05) with a well width of
20 nm (2) and of 5 nm (b). It is to be seen that both image contributions, the mutual
and the self-image part, have opposite sign. For small distances the magnitude of
the mutual image part is nearly the same as that of the self-image part. But for
larger distances the mutual image part goes to zero and hence, the self-image part
dominates the whole image potential of the electron-hole interaction.

In figure 2 the interaction potential V<, (r) is plotted for a layered structure
with ¢, /€,, = 1.81 (for instance Si-CaF,: ¢,; = 12.0 and ¢,, = 6.63). It is to
be seen, that now the image contributions become more important as in the case
€51/€,; = 1.05. Because both image contributions have opposite sign and they
are in a wide range of the same order it is necessary to include both contributions
in the calculation. Hence, the neglection of the self-image contribution as done
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Figure 1. Electron-hole interaction potential for a GaAs-Gaj_ Al:As DHS with
€s1/¢es = 1.05 without any image contribution (solid curve), without the self-image
contribution (dashed curve) and with all image contributions (dashed-dotted curve) for
(@) a =20 nm and (#) a = 5 nm.

VO% {mev)

Figure 2. Electron-hole interaction potential for a
DHS with €, /e,2 = 1.81 and ¢ = 20 nm without
any image contribution (solid curve), without the
self-image contribution (dashed curve) and with all
image contributions (dashed-dotted curve).

by Keldysh (1979} can give wrong results especially for layered systems with larger
differencies in the background dielectric constants. We note that is possible to include
the contributions of the self-image parts also as a electrostatic correction to the
subband energies of electrons and holes. This is possible because the self-image
terms are functions only of the dielectric constants and the thickness of the quantum
well and not of the distance » between electron and hole. Following the interaction
potential contains only VPR and VMM and the corresponding V5™ should appear
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in the single-particle equation for the electron and hole, respectively. But in this
paper we are mainly interested in the action of all image forces on the electron-hole
pair and hence, we include all terms. At the end of the calculation the self-image
contribution may be considered as a correction to the subband energy.

(a) -
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Figure 3. Electron-hole interaction potential for 2 bHs with (7} €s1/€s2 = 1.05 and
(b) €s1/¢42 = 1.81 with r = 10 nm without any image contribution (solid curve),
without the self-image contribution (dashed curve) and with all image contributions
(dashed-dotted curve).

In figure 3 we have plotted V<, versus a for a system with e, /¢,, = 1.05
(a) and for a system with ¢,, fe,, = 1.81 (b). It is to be seen that the dependence
of VC;, on the well width is stronger for quantum wells with larger differencies of
the dielectric constants. In figure 3(b) one can see the resulting mistake if one only
includes the direct and the mutual image contribution to the interaction potential
(difference between the dashed and the dashed-dotted line). Following, the result is
more exact if one neglects the image parts entirely as in the case if one includes only
parts of these.

In figure 4 we have plotted V', versus ¢,, /¢, for two different distances r
between electron and hole. This figure demonstrates very clearly the importance of
the image effects for the electron-hole interaction potential in layered systems. It
is to be seen that the magnitude of the mutual image and that of the self-image
potential increase neatly equal with increasing e, f¢,,.

In figure 5 we present results for the heavy-hole exciton binding energy versus
€,,/ €, For simplicity we use m_,m,, and p, from GaAs (v, = 7.36,7v, = 2.57)
to illustrate the image effects only. For GaAs the exciton Bohr radius is for the heavy-
hole exciton a.,, = 17.06 nm and for the light-hole exciton a,,_ = 13.55 nm.
The corresponding effective Rydberg constant Ry, = #?/(2a..°%uy) is Ry, =
3.28 meV and Ry_ = 4.12 meV, respectively. It is to be seen that analogeous
as for the interaction potential, the image effects to the electron-hole interaction
become important for binding energy. Including all image contributions the exciton
binding energy is lower than in the case without image forces. But the mutual image
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Figure 4. Electron-hole interaction potential for a  Figure 5. Exciton binding energy for a DHs without
DHS with a thickness of 20 nm and » = 10 nm  any image contribution (solid curve), without the
(the three upper curves) and v = 1 nm (the three  self-image contribution (dashed curve) and with all
lower curves) without any image contribution (solid  image contributions {dashed-datted curve) for @ =
curve), without the seif-image contribution (dashed 20 am.

curve) and with all image contributions (dashed-

dotted curve).

part gives rise to larger values of the binding energy. Following, if one includes the
self-image parts as a correction to the subband energy and the mutual image part
as a correction to the binding energy, the binding energy is increased by the image
charges. This agrees well with the recent results of Andreani, Pasquarello (1990} and
Tran Thoai et al (1990).

In conclusion we note, that the image potential effects on the excitonic properties
are weak for systems with small differencies of the background dielectric constant,
especially for the system GaAs—Ga,__Al_As. This is in agreement with recent calcu-
lations of the hydrogenic donor binding energy (Wendler and Hartwig 1990). But our
calculations show, that it is necessary to include both image parts, the mutual and the
self-image parts. The inclusion of the mutual image potential only can give wrong
results, especially for systems with larger differencies in the background dielectric
constants.
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