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J. Phys.: Condens. Matter 3 (1991) 9907-9914. Printed in the UK 

Effect of the image potential on the binding energy of excitons 
in semiconductor quantum wells 

L Wendlert and B Hartwig 
lnstitut fir Festk6,rpenheorie und Theoretisehe Optik, FriedrichSchiller-Universitit Jena, 
Max-Wien-Platz 1, D/Od9a) Jena, Federal Republic of Germany 

W i v e d  18 September 1990, in final form 2 July 1991 

Abstract. We report the resulls of variational estimates of the binding energy of excitons 
in quantum wells along the eEect of the image potential. 

In recent years optical properties of semiconductor quantum wells have received con- 
siderable research interest both experimentally and theoretically. Measurements on 
absorption coefficients of interband excitons in these structures showed clear evidence 
of multiple subbands due to the quantum confinement of electrons and holes by the 
bandedge discontinuities at the heterointerface (see e.g. Dingle et a1 1974, 1975, 
Miller et a1 1981, 1984, Meynadier et nl 1985). Most of the attention has been fo- 
cused on the excitons formed between the lower-lying electron and hole subhands, the 
latter being split into heavy-hole and light-hole subbands. It has been well established 
that the binding energies of excitons in lower-dimensional structures are significantly 
enhanced from the values in bulk materials as a result of the confined carrier motion. 
Most of the theoretical determinations of the exciton binding energy performed so 
far used variational calculations (see e.g. Lee and Lm 1979, Miller et a1 1981, Bastard 
et a1 1982, Greene and Bajaj 1983, Greene et a1 1984, Brum and Bastard 1985, Wu 
1989). Whittaker and Elliot (1988) and Ttan Thoai ef a1 (1990) calculated the exci- 
ton binding energy by numerical integration of the ScbrOdinger equation. Recently 
experimental measurements of the exciton binding energy in dependence on the well 
width of GaAs-Ga,-,Al,As quantum wells have been reported by Koteles and Chi 

In this paper we present a variational calculation in the effectivemass approxi- 
mation of the exciton binding energy in semiconductor quantum wells along to the 
effects of the image potential. The effects arise due to the different polarizabilities 
of the semiconductors forming the semiconductor microstructure. 

The Hamiltonian of the Wannier exciton in semiconductors with zincblende struc- 
ture such as GaAs and Ga,-,Al,As is expressed in terms of a 6 x 6 ma th .  In 
GaAs and Ga,_,Al,As, however, the exciton Hamiltonian can be further reduced to 
a 4 x 4 matrix as the value of the spin-orbit splitting is much larger than the exciton 
binding energy. Due to reduction in symmetry (along the axis of growth) and the 
band discontinuities at the heterointerfaces the degeneracy of the valence band at 
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the r point is removed. Following, the contribution of the off-diagonal terms to the 
binding energy is rather small. Hence, it is possible to retain only the diagonal part 
of the hole Hamiltonian (Greene ef a1 1984). This means that light-hole and heavy- 
hole excitons are uncoupled. In the framework of effectivemass approximation, the 
Hamiltonian of the Wannier exciton using cylindrical coordinates in the z-y plane is 
given by (Greene er oZ 1984, Brum and Bastard 1985) 

L Wendler and B H a m i g  

where me is the effective mass of the conduction electron, mhi the heavy (+) or 
light (-) hole effective mass along the direction perpendicular to the heterointerface, 
and pi is the corresponding reduced exciton mass in the z-y plane. Both, mh* 
and pi are expressed in terms of the Luttinger parameters y, and yz as mhi-' = 
mO-'(yl T 2y2), p*- l  = me-' t m,-*(y, & y2) where m, is the free electron 
mass. The position of the electron and the hole are designated by z, and z,, 
respectively, and (r,p) are the relative coordinates in the z-y plane. Ve(ze) is 
the conlining potential for the electrons in the conduction band and h ( z h )  that 
for the holes of the valence band, VC(r;z,,zh.) is the electron-hole interaction 
potential in the quantum well. The quantum well considered here is realized by a 
double heterostructure (DHS) consisting of a smaller gap semiconductor (Y = 1) for 
a > z > 0 (for instance GaAs) which is symmeaically embedded between a wider 
gap semiconductor (U = 2) for z > a and 0 > z (for instance Ga,-,AI,As). 

The trial wave function used in the variational calculation of the exciton binding 
energy is 

Here we assume that the Hamiltonian H is dominated by V, and V,. Hence, we use 
the assumption of the strong confinement limit which is valid if a < sex* (where 
aexi = 4m0~s1ii2/e2pi is the bulk exciton Bohr radius and the static dielectric 
constant of semiconductor 1). For simplicity we use g K K , ( z , , z h )  = g ( r , p ) .  The 
separability in r,p and z,,zh of $(zc , zh)  has been shown to lead to accurate 
results for GaAs-Ga,-,AI,As quantum wells with thicknesses ranging from about 
3 to about 30 nm (Brum and Bastard 1985). The function pOfc(ze) and p)(,(zh) 
are the envelope wave functions of electrons and holes defined by the corresponding 
single-particle Schrtrdinger equations. Within the square well potential with infinite 
barrier the envelope wave functions are given by 

and the corresponding energy eigenvalues, the subband energies, are 
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The wave function g(r, q) describes the internal motion of the exciton parallel to 
the interfaces. Using equations (2)-(4) in the Schrodinger equation of the exciton 
one obtains 

Herein the matrix element of the electrobhole interaction potential is given by 

We minimize the expection value EKK'( A) = ( glHlg ) / ( g1g ) and obtain by this 
variational procedure the exciton binding energy EBKK' = -min E*KK'(A),  this 
being the rigorous upper bound for the true binding energy. For g(r, q) we use the 
1s-like trial function 

with X the variational parameter and N a normalization constant. 
With respect to the bulk case, the electrobhole interaction is modified by image 

effects arising from the ditferent polarizabilities of the semiconductors of the layered 
system. TO calculate the electron-hole interaction potential we solve at first Poisson's 
equation together with the boundaly conditions of electrostatics and in a second step 
we calculate the electrostatic energy for an electron-hole pair at the positions z, and 
zh. The interaction potential is given by 

VC(r; z,, Zh) = - imdq l l  911 {JO(qllr) [VD'R(qll; ze,zh) + VMm(qll;ze?zh)] 
2T 

+ VS1M(ql13ze) + VSIM(qll,zh)} (8) 

with Jo being the Bessel function of the first kind, qI1 = lqlll the absolute value of the 
wavevector qI1 in the 5-y plane and Vc(qll; ze,zh) is the twodimensional Fourier 
transform of VC(r; ze, zh). We write the matrix elements in the form 

where the form factors fKK,(qt1) are calculated according equation (7) to be 

fKK'(q11) = J d z e J d z h  [p&(ze)lZ [&,(zh)12 f(q11; %e, l h )  ' (lo) 

The contributions to the form factor f(qll; z,, zh) are (Wendler et al 1990) 

fDIR(qll. 7 e ,  h ) = e-qiIIzc-2d (11) 
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and 
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(13) 

where eala = (esl - c82)/(e,, + csz). The interaction potential includes two physical 
different parts, the direct coulomb part equation (11) and the image parts equations 
(12) and (13). The image contribution to the interaction potential itselfs consists of 
two parts. The mutual image (MIM) potential arises from the two charges of the 
electron and hole. The image charge of the electron interacts with the charge of the 
hole and vice versa. But the self-image (SIM) potential of the electron and that of 
the hole arise from their image charges alone. This means interaction of the charge 
of the electron (hole) with its image charge. According to this physical origin the 
self-image potential doesn't depend on the difference T between the electron and the 
hole in the x-y plane. But for large distances r between the electron and the hole in 
the x-y plane, both the direct and the mutual image parts go to zero. Further, one 
can easily obtain from the above equations that for a i 03 both image contributions 
vanish as in the case ea2 - fsl. In all explicit estimations we restrict ourselves to the 
lowest optical subband transition K' = 0 i K = 0. For this case the form factor 
foo(q,)  is given by 

In figure 1 the interaction potential Vc,,(r)  is plotted for a GaAs-Ga,,,, 
AIo,,,& DHS (crl  = 12.87 and cS2 = 12.21: eS1/es2 = 1.05) with a well width of 
20 nm (a) and of 5 nm (b ) .  It is to be seen that both image contributions, the mutual 
and the self-image part, have opposite sign. For small distances the magnitude of 
the mutual image part is nearly the same as that of the self-image part. But for 
larger distances the mutual image part goes to zero and hence, the self-image part 
dominates the whole image potential of the electron-hole interaction. 

In figure 2 the interaction potential Vc0,(r) is plotted for a layered structure 
with C , ~ / C , ~  = 1.81 (for instance Si-CaF,: eal = 12.0 and es2 = 6.63). It is to 
be seen, that now the image contributions become more important as in the case 
Z , ~ / C , ~  = 1.05. Because both image contributions have opposite sign and they 
are in a wide range of the same order it is necessary to include both contributions 
in the calculation. Hence, the neglection of the self-image contribution as done 
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Figure 1. Electron-hole interaction potential for a GaAs-Gat-,AI,As OHS with 
cs% j c . 2  = 1.05 without any image contribution (solid curve), without the self-image 
mntribution (dashed curve) and with all image contributions (dasheddotted curve) for 
(a) D = 20 nm and (b) o. = 5 nm. 

r Inml 

FIgure 2. Electron-hole interaction potential tor a 
OHS with e.,/ea2 = 1.81 and a = 20 nm without 
any image contribution (solid curve), without the 
self-image conlribution (dashed curve) and with all 
image contributions (dashcddotted cuwe). 

by Keldysh (1979) can give wrong results especially for layered systems with larger 
ditferencies in the background dielectric constants. We note that is possible to include 
the contributions of the self-image parts also as a electrostatic correction to the 
subband energies of electrons and holes. This is possible because the self-image 
terms are functions only of the dielectric constants and the thickness of the quantum 
well and not of the distance T between electron and hole. Following the interaction 
potential contains only VDIR and VMIM and the corresponding VSIM should appear 
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in the single-particle equation for the electron and hole, respectively. But in this 
paper we are mainly interested in the action of all image forces on the electrowhole 
pair and hence, we inelude all terms. At the end of the calculation the self-image 
contribution may be considered as a correction to the subband energy. 

L Wendler and B Harhvig 
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Figure 3. Electron-hole intmclion potential for a DHS with (U)  6.1 f e a i  = 1.05 and 
@) csl = 1.81 Wilh r = 10 nm Without any image conlribution (solid curve), 
Wilhout the self-image conlribulion (dashed curve) and wilh all image contributions 
(dashed-dolled curve). 

In figure 3 we have plotted Vc,, versus a for a system with ~ * ~ / e ~ ,  = 1.05 
(a)  and for a system with esl/eSZ = 1.81 (b). It is to be seen that the dependence 
of Vc,, on the weU width is stronger for quantum wells with larger differencies of 
the dielectric constants. In figure 3(b) one can see the resulting mistake if one only 
includes the direct and the mutual image contribution to the interaction potential 
(Merence between the dashed and the dashed-dotted line). Following, the result is 
more exact if one neglects the image parts entirely as in the case if one includes only 
parts of these. 

In figure 4 we have plotted Vc,, versus E . ~ / E , ~  for two different distances r 
between electron and hole. This figure demonstrates very clearly the importance of 
the image effects for the electrowhole interaction potential in layered systems. It 
is to be seen that the magnitude of the mutual image and that of the self-image 
potential increase nearly equal with increasing e 8 1 / ~ s 2 .  

In figure 5 we present results for the heavyhole exciton binding energy versus 
eal/caZ. For simplicity we use me,mhf and p* from GaAs (yl = 7.36,y2 = 2.57) 
to illustrate the image effects only. For GaAs the exciton Bohr radius is for the heavy- 
hole exciton sex+ = 17.06 nm and for the light-hole exciton sex- = 13.55 nm. 
The corresponding effective Rydberg constant Ry, = hz/(!2aex*zp*) is Ry, = 
3.28 meV and Ry- = 4.12 mey respectively. It is to be seen that analogeous 
as for the interaction potential, the image effects to the electrowhole interaction 
become important for binding energy. Including all image contributions the exciton 
binding energy is lower than in the case without image forces. But the mutual image 

I 
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Figure 4. Elecmn-hole interaclion penr i a l  for a 
DHS with a thichess of 20 nm and r = 10 nm 
(the three upper c u m )  and 7 = 1 nm (the lhree 
lower CUNCS) without any image contribution (solid 
curve), without the self-image contribution (dashed 
curve) and wilh all image contributions (dashed- 
dofled CUNe). 
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Figure 5. Exciton binding energy for a DHS without 
any image contribution (solid curve), without the 
self-image contribution (dashed curve) and wilh all 
image contributions (dasheddotted curve) for a = 
20 nm. 

part gives rise to larger values of the binding energy. Following, if one includes the 
self-image parts as a correction to the subband energy and the mutual image part 
as a correction to the binding energy, the binding energy is increased by the image 
charges. This agrees well with the recent results of Andreani, Pasquarello (1990) and 
P a n  Thoai et a2 (1990). 

In conclusion we note, that the image potential effects on the excitonic properties 
are weak for systems with small dserencies of the background dielectric constant, 
especially for the system GaAs-Ga,-,AI,As. This is in agreement with recent calcu- 
lations of the hydrogenic donor binding energy (Wendler and Hartwig 1990). But our 
calculations show, that it is necessary to include both image parts, the mutual and the 
self-image parts. The inclusion of the mutual image potential only can give wrong 
results, especially for systems with larger differencies in the background dielectric 
constants. 
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